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Abstract - Parameter estimation is generally based upon the maximum likelihood approach and often
involves regularization. Typically it is desired that the results be unbiased and of minimum variance.
However, it is often better to accept biased estimates that have minimum mean square error. Bayesian
inference is an attractive approach that achieves this goal. More importantly, it permits us to consider
nuisance variables and incorporates regularization automatically. This paper describes the use of Bayesian
inference for an apparently simple experiment that is, in fact, fundamentally difficult and is compounded
by a nuisance variable.

1. INTRODUCTION
Let a system, S, have a measurable response, R, that is R = S(x, t,p) where x denotes spatial position, ¢
denotes time, and p denotes parameters. A model M is to be constructed that is presumed to accurately
reflect the systems behavior such that R = M = S(x,t, P,©,N) where P and © represent parameters
that are known and to be estimated, respectively, and A represents nuisance parameters that affect the
model but which we are not interested in estimating. Obviously we could estimate both © and A/, but
this would generally require more data and for many cases create additional instabilities in the solution.
The classification of a parameter as belonging to P, ©, or to A/ depends upon the specific situation.
The sensitivity of the response to the parameters can be best characterized by the relationship
between their uncertainties through the usual equation for variance, written here for two parameters, 6;
and 6, with standard deviations of o(6;) and o(62), as
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If the measured response is noisy, i.e. o(R) > 0, then the uncertainty in the parameters, o(8), is inversely
proportional to the sensitivity OR/90. While it is axiomatic that parameters should be estimated only
for cases in which the sensitivity is high, there are many cases in which the sensitivities are unavoidably
small, the resulting uncertainty in the parameters is large, and the stability of the estimation methods
is poor. Most methods involve some form of regularization to stabilize the solution and then appeal to
conventional statistics to define the resulting estimates in terms of point values, i.e., average values and
confidence limits [1]. For many problems this approach suffices, particularly when based upon Gaussian
statistics, but in some situations the statistical characterization is insufficient to accurately define the
uncertainty of the estimates.

In this paper we advocate the use of Bayesian inference, often referred to as Stochastic (or Statistical)
Regularization [2, 3], for estimating parameters, especially when nuisance variables have to be considered.
Bayesian inference has a long and well developed history, mostly mired in controversy because of its
"subjective” character and the need to utilize simplistic and often limiting probability distributions due
to the difficulty in evaluating the resulting inferences. This was particularly true for complex models.
However, with the computing power now available, one can numerically evaluate many of the complex
features of the method and obtain the desired results.

We will see that estimates derived from Bayesian inference have minimum mean square error, are
regularized, and account for nuisance variables in a consistent and theoretically sound manner. While
the method involves additional computations, the dramatic increase in computing power makes robust
Bayesian inference not only possible, but to be encouraged.

1.1 Test Case-The Error in Variables Model (EVM)

To demonstrate the use of Bayesian inference we have chosen the simple and apparently innocuous
problem of estimating the thermal conductivity by measuring the heat flux through and the temperature
difference across a layer of cross-sectional area A in a one dimensional conduction test system, Figure 1.
The conductivity is found by
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= (Q——AQTL)t/é which we write as = g(l—A_T—f)

where Q, represents the heat lost. Since the heat lost is proportional to the mean temperature of the
layer, it is also proportional to the heat input and we take it as Q1 = fQ. The constant of proportionality,
f, is, in general unknown, since it depends on the specifics of the ambient conditions (convective and
radiative losses) and how the layer is embedded in the ’guarded heat box.” Thus f is a nuisance variable
and all that we probably know about it is some ’quoted’ average value, that f is always positive and less
than one, and probably not more than a few multiples of the quoted value. Our model of the system in
terms of measurable variables is given by
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Figure 1: Schematic of conductivity measuring experiment.

In reality, neither ¢ nor AT can be measured without error. Thus, our system is really defined in terms
of the measured responses, R? and R”, by

Rl =qi+¢ (4a)
RT = AT, + €T (4b)

Note that f depends upon the conditions of the experiment and might be regarded as a stochastic quantity.
However, for a given set of test conditions we are going to treat it as a fixed, but unknown value, i.e.,
o(f) = 0. Assuming the errors, € and €T, to be of zero mean, constant variance, and uncorrelated, our
first guess of the imprecision of our estimate of k, denoted by k, using eqn.(1) would be given by

2 2
o*(k) = (%’;-) o(q) + (%) o*(AT) 5)

For an aluminum alloy 2024-T6, with a conductivity of 186 W/mK [4], a 2 cm layer with ¢ = 1200W/mK
gives a AT ~ 6C. Assuming that the heat input, ¢, can be measured with an accuracy of 2.5% and that
the AT can be measured to within 0.5 °C, [5], eqn.(5) gives o(k)/k ~ 8%. Now if N measurements are
taken, the standard deviation of the average k equals o(k)/v/N and for N=21, this would give o(k)/k ~
1.8%. Taking the usual 95% confidence interval based on the student-t distribution for 20 degrees of
freedom, +£2.080(k)/k ~ 4% or a range of 179 < k < 193. We will see that we can do better with
Bayesian inference.

1.2 Error in Variables Models - EVM

Now the experiment can be run in two different ways: Procedure A, and Procedure B. In Procedure A, N
repeated independent experiments are run with the heat input set to a nominally constant value. Even
though ¢; is presumed to be constant it varies randomly about a mean value, for example because of
fluctuations in the power supply (e.g. varying line voltages), and is measured with error.

Thus both R? and RT are realizations of random processes about a constant mean and with a
constant standard deviation. Figure 2a illustrates a sample data set and the least squares fit of eqn.(3).
The computed standard deviation is 1.8% and the confidence interval is 176 < k£ < 195. Note that it
is critical that the correct model be used. If one uses a linear regression that is not forced through the
origin, as required by eqn.(3), the estimate of k is clearly wrong.
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Figure 2a: Data and fit for procedure A. Figure 2b: Data and fit for procedure B.

In Procedure B, N tests are run with different values of heat input, which are assumed to be constant
during each test. These values of ¢; are deterministic but known only approximately because of the
measurement errors. A sample set of data is illustrated in Figure 2b. Using eqn.(3) in the least squares
fit, the results are the same as for Procedure A. In this procedure the range of ¢; is sufficient such that
forcing the fit through the origin is not critical in estimating k, but not forcing it to do so will lead to a
standard deviation approximately 10 times larger than that given by fitting eqn.(3).

Since Q —Qr, and AT are related through eqn.(3), estimates of o(k) based upon eqn.(2) are incorrect
because of the neglect of the correlation between R? and RT. Equations (4) can be written as

R;’ =gq; + 6;-1 (6a)
R = Bg; + ¢ = BR? — Bel + € (6b)

Equations (6) constitute what is referred to as the ’error in variables model” that has been extensively
treated from both the classical [6] and Bayesian [7] points of view. These models are generally classified
as: 1) structural where g; are random variables, independent of the errors, having a constant mean
and a constant variance of 02, i.e., Procedure A*, 2) functional where ¢; represent unknown constants,
Procedure B. From the classical point of view, the models must be treated differently in estimating 3 [6]
and require additional information about either o(e?), o(€T), or their ratio, none of which are likely to
be known with exactitude and generally are estimated from the measurements.

The true values of ¢; and AT} are not known because of the measurement errors. However, because
of the model, eqn.(3), that relates ¢; and AT}, the measurements, R} and RT, are correlated with a
covariance of —f3 03. Including this term in eqn.(1), gives a reduction of approximately 40% in the
standard deviation as shown in Table 1.

Table 1. Estimated uncertainties in conductivities, eqn.(1). True value = 186.

k o(k)| Confidence Interval

eqn.(1) w/o cov 3.26 179-193
eqn.(1) w/ cov 2.10 182-190
Least Squares Fit | 185.3| 3.33 176-195

These values were obtained because we knew the standard deviations of the measurement errors.
The covariance term is important because of its large negative value relative to the other terms. If o'(€?)
and o(eT), and k are poorly known, it is not possible to estimate the covariance term —-ﬂag. The results
given in the table are for no losses, i.e., f = 0. The question is how to account for the uncertainty in the
losses.

1.3 Conventional Estimation

Although the relationship between regularization and Bayesian inference has been noted before, it is
useful to review the usual methods of parameter estimation based upon the least squares approach to
emphasize the relationship of Bayesian Inference to regularization. Consider the case where the model
M is a non-linear function of the parameters ©. Let the true value of the parameter be denoted by ©
and the estimated value by ©. The measurements are presumed to be corrupted by the noise € to give

* From eqn.(5a), the variance of R? is 02 + o
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R=M(©)+¢ (7)
where E[e] = 0 and cov[e] = . The estimated values, © are those that minimize the functional, F(©)
F(6) =||R-M(O)| (8a)
~ ||B - M(©) - T 16(6 - O (8)
where ||z|| represents the length of the vector z and
R — M(©) =e, the residual (8¢)

Within the linear assumption, provided that the number of readings, N, is sufficiently large [8] it is
permissible to evaluate A; = dM/dO at © = @], and the equation is solved iteratively using*

8,41 =0; — (ATS14;)7 1 ATS R — M(6;)] 9)

For d parameters, R and M are [Nx1] vectors, © is a [1xd] row vector and A is a [Nxd] matrix. Upon
convergence, the estimate @b satisfies

6, — 0 = (ATZ 1 A)TATE ! [R — M(6s)] (10a)
E[é |=6 (10b)
cov[Bp] = (ATE14)~! (10¢)

Equations (10b) and (10c) represent the generally acceptable desirable state of 6 being an unbiased
estimator with minimum variance - i.e., satisfying the Cramer-Rao lower bound [9]. Such estimators are
termed ”efficient” and are the most informative, where the Fisher information matrix, I, is defined as
I = cov™1(©) = ATE~1 A. These estimators are generally called BLUE, Best Linear Unbiased Estimators,
hence the notation ©.

In solving eqn.(9) one must know the covariance matrix ¥. Generally, the best that can be done is

to write Y o’,%ﬂ (11)

where (2 is the correlatlon matrix and oy, is the standard deviation of the noise. Substituting for ¥ from
eqn.(11) into eqn.(9), 02 cancels and only the correlation matrix is needed to obtain ©. If all the noise is
from a single source, the correlation matrix is often taken to be the identity matrix, /. Although O can
be found without knowing o, it is required to determine the variance of ©. If not given, an approximate
value can be found from the residuals by using

G,

, €T le
" N-d
where the superscript T’ denotes transpose and d denotes the number of parameters estimated. To arrive
at the results, eqns (10) and (12), the only statistical information needed is the correlation matrix of the
measurement noise. This can usually be obtained by standard statistical analyses [10]. Although most
reported parameter estimation studies that considered real data ignored possible correlations, it is not
uncommon for sequential measurements taken at a relatively high sampling rate to be correlated. The
effect of correlated measurements is to increase the standard deviation of the estimated parameter. Let
the measurement errors be autoregressive with cov(R;, R;) = p/*~7!, not uncommon for reasonably high
sampling rates. Emery [11] examined a sequence of transient temperature measurements and showed
that a considerable correlation, p > 0.2, existed. The effect of the correlation is to increase the standard
deviation of ©, givin
8 ¢ vaith correlation — 0721(}:—_/;) (13)
When the readings are correlated, one can look at the problem as one with an increased o, of the data
or as one in which the effective number of readings has been diminished to Neffective = N(1—p)/(1+ p).
At this point, all that one can say about the estimate, O, is its value and an approximate value of
the standard deviation. Most investigators will then cite the usual equations for confidence limits based
on the student-t distribution to give some idea of the range of © [9].

(12)

* Because of the reparameterization from k to 3, eqn.(3) is linear in # and no iteration is needed
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2. MAXIMUM LIKELIHOOD

The results given in eqn.(10) are based upon classical statistics and they reflect what one would expect
to find if an experiment were conducted a great number of times, with each time producing an estimate
©;. Most experiments are conducted only a few times and the concept of an expected value, E[é)],
is not appropriate. In the Maximum Likelihood method the estimated parameter is taken to be that
value for which the data actually measured had the highest probability of occurring. That is, given a
conditional probability distribution of the data I = p(R|©)*, one searches for values of © that maximize
l. Since the data, R, are composed of a deterministic part, M (©), and a random error, €, the probability
density distribution of R is simply that of e. We must then postulate a pdf for the error. The most
common assumption is that the errors are independent and identically distributed and follow a Gaussian

distribution with zero mean and a constant standard deviation, but may be correlated. This leads to a
likelihood of

P(R|O) = —— - ¢~ H(R-M(©))"E (R-M(®)) (14)

Var \/det(S)

The values of © MmLE maximize eqn.(14). The maximum likelihood method is probably the single most
used method in parameter estimation. In principle, it can be used to estimate both © and ¥ and any
other unknown parameters in the model. If ¥ is known, 6 MmLE are unbiased. However, estimates of the
components of ¥ are not unbiased, except in the limit as N — oo, i.e., asymptotically unbiased [8, 12].

For Procedure A, maximum likelihood can be used to estimate 3, or, 04,q, and AT only if additional
information is available. For the case of eqn.(3), forcing the intercept to be zero is sufficient information
for estimating . For Procedure B, the functional model, we are attempting to estimate 3, o, 04 and the
N values of g;. It has been shown that the likelihood has no maximum, only a saddle point [6, 12] and
thus © cannot be estimated. Since every new test introduces another g;, more data will not resolve the
issue. However if the ratio, or /o4 is known, a solution is possible [6]. This is also true if the structural
model includes more than one parameter.

Nuisance variables cannot be treated by maximum likelihood. About the best that can be done is
to first estimate all parameters, substitute A into eqn.(14), and then re-estimate © [12].

3. TIKHONOV REGULARIZATION R
If the matrix ATX~'A is ill-conditioned, one sees from eqn.(10c) that the standard deviation of © is
likely to be very large. The usual approach is to regularize the equation by minimizing

F(©)=||[R-M(©)||+asS (15)

where S is a stabilizing functional and « is a problem dependent constant. The choice of S depends upon
qualitative assumptions about © and strongly influences both the solution and its convergence [13]. S
is subject to some fairly restrictive conditions to ensure that a solution can be obtained [14]. For many
engineering problems, S is often taken to be a sum of zeroth, first, and second order derivatives of ©
which can be represented in the form

s©)=l|(e-0e)'e© -0 (16)

where © is a chosen value, ® is a symmetric positive definite matrix satisfying ©7®0 > v||0||? for a
fixed v and all ©. In this case ® is a diagonal matrix with 3, 5, and 7 diagonals respectively [14]. The
resulting equation to estimate © is then

6, - 0= (AT 1A+ ad®T®) AT (R — M(6,)) (17)

In essence, one is imposing a requirement that © be a smooth function. We shall see that the form of
eqn.(17) corresponds directly to the assumption of prior information used in Bayesian inference.

The estimate, ©;, is biased since the norm ||© — ©|| < §/1/a, where § is an error bound on [€||.
This illustrates the dilemma: choosing a small « leads to instability, but a large value overly smoothes
the solution. A solution in which o = () is termed a regular algorithm. It is common to use Morozov’s
discrepancy principle [13, 14] which suggests that a be chosen such that

IR —M(©)||~ 4 (18)

Invoking Morozov’s discrepancy principle leads to ||© — ©|| = O(v/8). Other than this general result, it is
difficult to understand how « affects the results, except by examining specific problems. Since Tikhonov

* p(R|©) denotes the pdf of R given a specified value of ©
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regularization can be regarded as a form of ridge regression, it is useful to appeal to this method for
insight into regularization. Ordinary ridge regression [15] yields the biased estimator ©, where

O, — 0= (ATS 1A+ pI) PATS YR — M(6,)) (19)

If the errors are uncorrelated and of constant variance, ¥ = 02I, a comparison of eqns (17) and (19)
shows that if & = I, p = o The importance of this observation is that an appropriate choice of p gives
a parameter with a minimum mean square error that is less than that of ©,

E[||6, - ]| = var(6) + bias*(©) < EJ||O - O] (20)

It is common to use values of p between 0.7 and 0.95 o2. While it is always possible to find a value of
p, i.e, a, that will minimize E[||©, — ©]||] for a specific ©, it is not possible to find one value that will
suffice for all © for a given model, M (©) [14].

4. BAYESIAN INFERENCE
Bayesian inference is based on Bayes’ equation relating conditional probabilities, illustrated here for two
independent parameters, 6; and 62 and a response R

p(R|0:1,02)m(01)m(62)
C

p(91,02]R) = where C://p(Rwl,92)7!'(91)7(‘(02)(191(102 (21)

7(61) and 7(f2) are termed the ’prior’ probabilities and reflect information about 6 before the experiment
is run. p(61,62|R) is called the ’posterior’ probability of §; and #; and reflects how the priors are modified
by the experimental data. If the errors are assumed to be normally distributed and a prior which assumes
that © is normally distributed about a mean of I" with a variance of V' is used, the posterior is

1 1
p(O|R) = ol

o~ H(R-M(©))"E " (R-M(®)) 1 e HO-DTVTNO-T) (99

(V2m)N \/det(%) Vo \fdet(V)

Upon evaluating C, we find that 6 -Tis normally distributed, leading to the Bayes’ estimator

6p =T+ (V7' + AT A)" ATS"Y(R — M(6p)) (23a)
with a variance of

var(@p) =(V~! + ATE"14)7! (23b)

Comparing eqns (17) and (23) reveals the direct connection between Bayesian inference and the traditional
regularization approach. Bayesian inference contains all of the needed requirements, regularization, and
the possibility of minimum mean square error, with V' being the direct equivalent of a®7® in eqn.(17).

A particular problem is the evaluation of C in eqn.(14) for complex nonlinear models, M (©). If one
were content with characterizing © by the mode of the posterior, then it is only necessary to find the
maximum of the numerator and C' is unimportant. It is generally accepted that a better representation
of © is the mean, i.e., © = [ p(6|R)dO, whose evaluation requires evaluating C. Furthermore, specifying
either the mode or the mean without an estimate of the confidence limits is unsatisfactory. Bayesians refer
to these limits as high posterior density (HPD) limits or credible limits. To find these limits, as depicted
on Figure 3, it is necessary to know p(©|R) in order to evaluate the integral. Typically Monte Carlo
methods are used, but they are computationally expensive. The Markov Chain Monte Carlo approach
[16] has provided some relief in this area as demonstrated in [17].

Probably the most subjective part of Bayesian inference is the choice of the priors. Consider the case
of estimating the mean of a number of readings. If the noninformative’ priors [18, 19] are used (i.e., a
constant for the mean and 1/0 for the standard deviation) the estimate is identical to the classical value.
However this correspondence between Bayesian and classical estimators of other statistics is not true in
general. When ’proper’ priors, i.e. ones that integrate to unity, are used, Wald [20] has shown that the
estimator has the smallest mean square error of any estimator over the same range of variables.
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Figure 3: Illustrating the 95% high posterior density region (Credible Interval) for p(k)
where k = Q/AT and with @ and AT normally distributed.

4.1 Nuisance Parameters

A very important feature of Bayesian inference is the treatment of 'muisance parameters’. These are
parameters that affect the posterior but are not of interest, i.e. are nuisance variables. For example if
the standard deviation of the errors, o, is not known and is of no interest, the posterior is 'marginalized’
through integration. Letting 63 be o, then the marginal posterior pdf of 6; is

p(6ulR) = [ p(6r,01R)d = [ (6s|R.0)n(o)do (24)

In solving eqn.(24), a prior for the nuisance variable must be specified. Priors range from the noninfor-
mative to highly specific pdfs.

4.2 Optimal Design

Optimal design refers to the choice of the measurement points, x,t and known parameters, P, that will
minimize var(©). For a single parameter, ATY 14 is a scalar, but even then finding the optimal values
of x,t is not a trivial task since the contribution of different measurement points, x, will change with
time. Thus, other than gross assumptions about ¢;, it is rarely possible to define an optimal design. For
d parameters, W = ATY 1A is a matrix and two common metrics for multi-parameter inverse design are
the A and D optimalities [21]. D minimizes the determinant of W, i.e., the product of the eigenvalues.
If any eigenvalue of W is zero, D will be zero regardless of the uncertainty of the other parameters. A
optimality minimizes the trace of W, i.e., the sum of the eigenvalues and can only equal zero if all are
zero. From the classical point of view it is hard to predict the effect of the measurement points on these
different measures.

In Bayesian inference, optimal design is defined by minimizing W* = (V= + ATS"14). Now it is
easy to see that if good information is posited about any one parameter, 64, that the diagonal element
V(d,d) — 0 and the determinant of W* will approach zero regardless of the imprecision in the other
parameters. However, if A optimality is used, it can only approach zero if all variances go to zero,
meaning perfect prior knowledge of all parameters. A optimality is not without its problems since it is
not invariant to reparameterization [18]. Thus an optimal design for 3, eqn.(3), may not be optimal for
k. However, recognition that the optimality is related to the prior information, and thus in principle to
the design points, is often useful in choosing the points [22].

A good example of combining optimal design with Bayesian techniques is given by Sacks [22] where
Gaussian processes were used for the design of a complicated electrical circuit. The optimal points were
found by an exchange process in which a first choice of design points was made. Then each design point
was varied slightly and the optimality computed in terms of the variance. If the variance was reduced,
the new design point was accepted. This was continued until no better design point could be found.
Attention was then directed to another design point and the process repeated. The process is not simple,
usually is very time consuming, and does not yield a unique set of design points.

For statistical problems, the concept of optimal design points is very relevant. For engineering and
scientific experiments, the range of specific parameters is usually very restricted and finding optimal
points is not always relevant. This is particularly true when responses are measured with respect to
position and time. Sampling times are almost always in uniform increments and measurement points
are generally fixed. In the problem discussed here, where it is possible to explore the effect of different
applied heating rates, we have chosen to use regular increments for simplicity.
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5. CASE STUDY — ESTIMATION OF k

Since the conventional least squares approach (fitting AT; to g;) assumes that g; is without error, let us
look at the problem from the Bayesian point of view. Assuming that the errors are normally distributed,
the likelihood is

~ gz (R=9T(R=q) —3 0 (RT-AT)T(RT-AT)
q e T

1 1
p(RT,Rq|q,,B,f,0'q,O'T) X O'_NO'_Ne (25)
q

T
While one may have a good idea of o4, or is more problematic. From a knowledge of the instrumentation
one often has a reasonable idea of 0,/ or. Let us recast the problem in terms of ¢ = 02 /0% giving a
posterior of

p(RT, Rq, B, f, ¢, o) (@) (B)7(f)7(d)7(oq)
~ Jp(RT,Rilg, B, f,$,0)m()m(B)r(f)m()(0,)dq dB df d¢ do,

We marginalize to get the posterior p(3|R) by integrating over ¢, ¢, 04, and f: a non-trivial task which can
usually be done only numerically. As noted by Zellner [7], the posterior p() may depend strongly upon
the prior for g. In a rough sense, the extremes are a) considering 7(g) as uniform over —oo < ¢ < oo (an
improper pdf, although p(3) will be proper) and b) concentrated about the maximum likelihood estimate

(q’IB, f1 ¢:0-qu R (26)

of g, which for a given value of ¢ is #RI + 3 RT
q = ——— 27
dMLE o+ 3 (27)
Using non-informative priors for 3, f,q, ¢ and o4 and integrating gives
1 -
p(B, £, ¢IR) o S{(RT = B(1 = HRT(RT - b1~ HRN)T (28)
If the more concentrated assumption is used, ¢ = §prpE, the corresponding posterior is
¢N/21+ﬂ2 1+f2 ¢N
p(6,1,0IR) e At 2 (29)

[(RT = B(1 = f)R)T(RT — B(1 - f)RN)N

It is clear that our estimates of B will depend upon what priors we assume. The robustness of the approach
was tested by using uniform and normal priors for 3, f, ¢ and also an inverted Gamma distribution for ¢.
For =0, no losses, the posterior p(klR) was found to be essentially normal as shown in Figure 4, but with
a narrow confidence interval. Estimates of k were quite insensitive to the form of the priors and some
representative values are shown in Table 2. It is because of the narrowness of p(k|R) that the confidence
intervals listed in Table 2 are much tighter than those from least square regression.
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Figure 4: The posterior p(l;:) with no losses. Figure 5: The posterior p(l?:) with losses, 0 < f <0.1.

When losses are present we assumed that the quoted heat loss for the system was an average of 5%. For
high conductivity values it should approach 0 and for insulators with large AT we assumed that it could
approach 10%. Using a uniform prior from 0 to 10%, an inverted Gamma, and a normal distribution
gave very similar results. Figure 5 illustrates the posterior pdf of k. The posterior p(k|R) is far from
normal and, as expected, the uncertainty in f leads to an increased standard deviation of k and a slight
bias in k. For no heat loss, or equivalently a known heat loss, the estimated conductivity was in error
by less than 1% and when the heat loss was uncertain, in error by less than 2%. Because of the shape
of the Bayesian posterior, there is not much difference between the 95% and 99% confidence intervals, in
contrast to the width of the confidence interval for a normal distribution.



E02

Table 2. Estimated conductivities, True value = 186.

95% 99%
Type m(g;) | Mean Value| o(k)| Confidence| Confidence
Interval Interval
No Losses

Structural Uniform 184.9| 2.38 180-190 179-191
” Least Squares Fit 185.1| 3.33 178-192 172-198
Functional Uniform 185.2| 2.37 181-190 179-192
” q4=4gMLE 185.2| 3.45 179-192 177-195
” N(RQ,4U§) 185.2| 2.37 181-190 179-192
” Least Squares Fit 185.6| 3.33 176-195 173-198

Losses, 0 < f <10%
Structural Uniform 181.7| 6.22 174-196 172-199
Functional Uniform 181.7| 6.22 174-196 172-199
nr q=qMLE 183.8| 6.76 173-198 172-201
” N(RQ,403) 181.5| 6.22 174-196 172-199

where N (a,b) denotes a normal distribution with a mean of a and a standard deviation of b

6. CONCLUSIONS

As tolerances become tighter and risk avoidance is emphasized, designs are increasingly focusing on
estimating sensitivities to the many parameters of the model. To date most analyses have used the
uncertainty propagation, eqn.(1), based upon some nominal values of the parameters. Unfortunately this
gives only local sensitivity and may not reflect the overall behavior. Such behavior can only be found
from the posterior pdf of the system’s responses as determined from eqn.(28). This requires a realistic
prior. In many situations, the assumption that the posterior, p(k|R) is normal is reasonable as shown on
Figure 4 when there is no uncertainty about the losses.* However, when some parameters have posterior
distributions that are non-normal, Figure 5, conclusions about system sensitivity may be seriously in
error.

Bayesian inference as commonly applied in statistical regularization, has the ability to automatically
include regularization and to yield a minimum mean square error. Its ability to account for uncertainty
in other model parameters has not been exploited because of the heavy computational costs. With the
increased computer power now available, the inverse problem and parameter estimation field should give
serious consideration to applying it on a regular basis.
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